.. _IFS-DYAMOND-SUMMER: IFS ======================================== Model description ----------------- | IFS-H is a hydrostatic spectral transform model with a semi-Lagrangian semi-implicit solution procedure, discretised on a cubic octahedral grid (`Wedi 2014 `__, `Malardel et al. 2016 `__). Here we used the single precision version of IFS (cycle 45r2). Information on IFS can be found at `the IFS documentation `_. Note that cycle 45r2 differs from 45r1 only by a technical change in ecbuild and the change from double to single precision, thus 45r1 is still the relevant reference. Contact ~~~~~~~ `Peter Dueben `__ and `Nils Wedi `__, European Centre for Medium-Range Weather Forecasts (ECMWF), UK Data structure -------------- Horizontal ~~~~~~~~~~ Here we offer two runs with TCo1279 (~9km) (ECMWF's operational configuration) and TCo2559 (~4km) following the Dyamond protocol. Vertical ~~~~~~~~ The runs use 137 vertical levels (data provided from level 137 to level 25). The number of grid columns is 26 306 560 (4km) and 6 599 680 (9km). The vertical discretisation uses hybrid vertical levels defined as A(eta) + B(eta)*p_s, with A, B ixed defined parametersand where p_s is the provided surface pressure. Pressure on model levels needs to be calculated by the given formula. Data ---- **gg_uv_mars_out_ml_vor_div_sh.*.grib, output interval: PT03h (levels 125-137)** Please ignore the dates indicated in these files and concentrate on step for time. = ========== u velocity u v velocity v = ==========   **mars_out.*, output interval: PT01h** ====== ======================================================== ci sea ice area fraction asn snow albedo rsn snow density sst sea surface temperature istl1 ice temperature layer 1 istl2 ice temperature layer 2 istl3 ice temperature layer 3 istl4 ice temperature layer 4 swvl1 volumetric soli water layer 1 swvl2 volumetric soli water layer 2 swvl3 volumetric soli water layer 3 swvl4 volumetric soli water layer 4 es snow evaporation smlt snowmelt dsrp direct solar radiation lspf large-scale precipitation fraction uvb downward UV radiation at the surface par photosynthetically active radiation at the surface cape convective available potential energy tclw total column liquid water tciw total column cloud ice water z geopotential tcw total column water tcwv total column water vapour stl1 soil temperature level 1 Sd solar duration lsp large-scale precipitation cp convective precipitation tp total precipitation sf snowfall bld boundary layer dissipation sshf surface sensible heat flux slhf surface latent heat flux chnk Charnock msl mean sea level pressure blh boundary layer height tcc total cloud cover 10 u 10m zonal wind 10 v 10m meridional wind 2 t 2m temperature 2d 2 metre dewpoint temperature ssrd surface solar radiation downwards stl2 soil temperature level 2 lsm land sea mask strd surface thermal radiation downwards ssr sub-surface runoff str surface net thermal radiation tsr top net solar radiation ttr top net thermal radiation ewss eastward turbulent surface stress nsss northward turbulent surface stress e evaporation stl3 soil temperature level 3 lcc low cloud cover mcc medium cloud cover hcc high cloud cover sund sunshine duration lgws eastward gravity wave surface stress mgws northward gravity wave surface stress gwd gravity wave dissipation src skin reservoir content ro runoff tsrc top net solar radiation ttrc top net thermal radiation ssrc surface net solar radiation strc surface net thermal radiation skt skin temperature stl4 soil temperature level 4 tsn temperature of snow layer fal forecast albedo fsr forecast surface roughness flsr forecast logarithm of surface roughness for heat iews instantaneous eastward turbulent surface stress inss instantaneous northward turbulent surface stress ishf instantaneous surface sensible heat flux ie instantaneous moisture flux vimd vertically integrated moisture divergence tisr TOA incident solar radiation sro surface runoff ssro sub-surface runoff tcrw total column rain water tcsw total column snow water cin convective inhibition kx k index totalx total totals index vis visibility i10fg instantaneous 10 metre wind gust pev potential evaporation fzra accumulated freezing rain ilspf instantaneous large-scale surface precipitation fraction crr convective rain rate lsrr large scale rainfall rate csfr convective snowfall rate water equivalent lssfr large scale snowfall rate water equivalent ptype precipitation type ====== ========================================================   **mars_out_ml_moist.*, output interval: PT03h** ==== =================================== q specific humidity clwc specific cloud liquid water content ciwc specific cloud ice water content ==== ===================================   **mars_out_pl_gg.*, output interval: Pt1h** = ===================== w vertical velocity m/s r relative humidity = =====================   **mars_out_sfc_ps_orog_gg.*, output interval: Pt3h** ============ ============================================================ lnsp logarithm of surface pressure ============ ============================================================ geopotential Topography stored as geopotential (z). Multiply with 1/g ? m ============ ============================================================   **gg_mars_out_ml_upper_sh.*.grib, output interval: Pt3h (levels 125-137)** +---+--------------------------------+ |t | temperature | +---+--------------------------------+ |\ |vertical velocity/omega in Pa/s | +---+--------------------------------+ Initialisation and Boundary conditions -------------------------------------- Soil Initialisation ~~~~~~~~~~~~~~~~~~~ Initial soil data from the ECMWF IFS model state at the initialisation date are time and spatially interpolated. Input Data ~~~~~~~~~~ Input data are extracted from mars for the specified start date 2016080100. Treatment of SST and Sea Ice ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Daily updated SST/CI from ECMWF analysis is used. See also --------