\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
<xarray.Dataset>\n",
"Dimensions: (cell_grf: 14, edge: 31457280, edge_grf: 24, max_chdom: 1, max_stored_decompositions: 4, nc: 2, ncells: 20971520, ne: 6, no: 4, nv: 3, two_grf: 2, vert_grf: 13, vertex: 10485762)\n",
"Coordinates:\n",
" clon (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" clat (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" vlon (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" vlat (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" elon (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" elat (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
"Dimensions without coordinates: cell_grf, edge, edge_grf, max_chdom, max_stored_decompositions, nc, ncells, ne, no, nv, two_grf, vert_grf, vertex\n",
"Data variables:\n",
" clon_vertices (ncells, nv) float64 dask.array<chunksize=(5242880, 3), meta=np.ndarray>\n",
" clat_vertices (ncells, nv) float64 dask.array<chunksize=(5242880, 3), meta=np.ndarray>\n",
" vlon_vertices (vertex, ne) float64 dask.array<chunksize=(1747627, 6), meta=np.ndarray>\n",
" vlat_vertices (vertex, ne) float64 dask.array<chunksize=(1747627, 6), meta=np.ndarray>\n",
" elon_vertices (edge, no) float64 dask.array<chunksize=(3932160, 4), meta=np.ndarray>\n",
" elat_vertices (edge, no) float64 dask.array<chunksize=(3932160, 4), meta=np.ndarray>\n",
" ifs2icon_cell_grid (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" ifs2icon_edge_grid (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" ifs2icon_vertex_grid (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" cell_area (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" dual_area (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" phys_cell_id (ncells) int32 dask.array<chunksize=(20971520,), meta=np.ndarray>\n",
" phys_edge_id (edge) int32 dask.array<chunksize=(31457280,), meta=np.ndarray>\n",
" lon_cell_centre (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" lat_cell_centre (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" lat_cell_barycenter (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" lon_cell_barycenter (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" longitude_vertices (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" latitude_vertices (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" lon_edge_centre (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" lat_edge_centre (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_of_cell (nv, ncells) int32 dask.array<chunksize=(3, 10485760), meta=np.ndarray>\n",
" vertex_of_cell (nv, ncells) int32 dask.array<chunksize=(3, 10485760), meta=np.ndarray>\n",
" adjacent_cell_of_edge (nc, edge) int32 dask.array<chunksize=(2, 15728640), meta=np.ndarray>\n",
" edge_vertices (nc, edge) int32 dask.array<chunksize=(2, 15728640), meta=np.ndarray>\n",
" cells_of_vertex (ne, vertex) int32 dask.array<chunksize=(6, 5242881), meta=np.ndarray>\n",
" edges_of_vertex (ne, vertex) int32 dask.array<chunksize=(6, 5242881), meta=np.ndarray>\n",
" vertices_of_vertex (ne, vertex) int32 dask.array<chunksize=(6, 5242881), meta=np.ndarray>\n",
" cell_area_p (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" cell_elevation (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" cell_sea_land_mask (ncells) int32 dask.array<chunksize=(20971520,), meta=np.ndarray>\n",
" cell_domain_id (ncells, max_stored_decompositions) int32 dask.array<chunksize=(5242880, 4), meta=np.ndarray>\n",
" cell_no_of_domains (max_stored_decompositions) int32 dask.array<chunksize=(4,), meta=np.ndarray>\n",
" dual_area_p (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" edge_length (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_cell_distance (nc, edge) float64 dask.array<chunksize=(2, 7864320), meta=np.ndarray>\n",
" dual_edge_length (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edgequad_area (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_elevation (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_sea_land_mask (edge) int32 dask.array<chunksize=(31457280,), meta=np.ndarray>\n",
" edge_vert_distance (nc, edge) float64 dask.array<chunksize=(2, 7864320), meta=np.ndarray>\n",
" zonal_normal_primal_edge (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" meridional_normal_primal_edge (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" zonal_normal_dual_edge (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" meridional_normal_dual_edge (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" orientation_of_normal (nv, ncells) int32 dask.array<chunksize=(3, 10485760), meta=np.ndarray>\n",
" cell_index (ncells) int32 dask.array<chunksize=(20971520,), meta=np.ndarray>\n",
" parent_cell_index (ncells) int32 dask.array<chunksize=(20971520,), meta=np.ndarray>\n",
" parent_cell_type (ncells) int32 dask.array<chunksize=(20971520,), meta=np.ndarray>\n",
" neighbor_cell_index (nv, ncells) int32 dask.array<chunksize=(3, 10485760), meta=np.ndarray>\n",
" child_cell_index (no, ncells) int32 dask.array<chunksize=(4, 5242880), meta=np.ndarray>\n",
" child_cell_id (ncells) int32 dask.array<chunksize=(20971520,), meta=np.ndarray>\n",
" edge_index (edge) int32 dask.array<chunksize=(31457280,), meta=np.ndarray>\n",
" edge_parent_type (edge) int32 dask.array<chunksize=(31457280,), meta=np.ndarray>\n",
" vertex_index (vertex) int32 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" edge_orientation (ne, vertex) int32 dask.array<chunksize=(6, 5242881), meta=np.ndarray>\n",
" edge_system_orientation (edge) int32 dask.array<chunksize=(31457280,), meta=np.ndarray>\n",
" refin_c_ctrl (ncells) int32 dask.array<chunksize=(20971520,), meta=np.ndarray>\n",
" index_c_list (two_grf, cell_grf) int32 dask.array<chunksize=(2, 14), meta=np.ndarray>\n",
" start_idx_c (max_chdom, cell_grf) int32 dask.array<chunksize=(1, 14), meta=np.ndarray>\n",
" end_idx_c (max_chdom, cell_grf) int32 dask.array<chunksize=(1, 14), meta=np.ndarray>\n",
" refin_e_ctrl (edge) int32 dask.array<chunksize=(31457280,), meta=np.ndarray>\n",
" index_e_list (two_grf, edge_grf) int32 dask.array<chunksize=(2, 24), meta=np.ndarray>\n",
" start_idx_e (max_chdom, edge_grf) int32 dask.array<chunksize=(1, 24), meta=np.ndarray>\n",
" end_idx_e (max_chdom, edge_grf) int32 dask.array<chunksize=(1, 24), meta=np.ndarray>\n",
" refin_v_ctrl (vertex) int32 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" index_v_list (two_grf, vert_grf) int32 dask.array<chunksize=(2, 13), meta=np.ndarray>\n",
" start_idx_v (max_chdom, vert_grf) int32 dask.array<chunksize=(1, 13), meta=np.ndarray>\n",
" end_idx_v (max_chdom, vert_grf) int32 dask.array<chunksize=(1, 13), meta=np.ndarray>\n",
" parent_edge_index (edge) int32 dask.array<chunksize=(31457280,), meta=np.ndarray>\n",
" child_edge_index (no, edge) int32 dask.array<chunksize=(4, 7864320), meta=np.ndarray>\n",
" child_edge_id (edge) int32 dask.array<chunksize=(31457280,), meta=np.ndarray>\n",
" parent_vertex_index (vertex) int32 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" cartesian_x_vertices (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" cartesian_y_vertices (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" cartesian_z_vertices (vertex) float64 dask.array<chunksize=(10485762,), meta=np.ndarray>\n",
" edge_middle_cartesian_x (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_middle_cartesian_y (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_middle_cartesian_z (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_dual_middle_cartesian_x (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_dual_middle_cartesian_y (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_dual_middle_cartesian_z (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_primal_normal_cartesian_x (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_primal_normal_cartesian_y (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_primal_normal_cartesian_z (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_dual_normal_cartesian_x (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_dual_normal_cartesian_y (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" edge_dual_normal_cartesian_z (edge) float64 dask.array<chunksize=(15728640,), meta=np.ndarray>\n",
" cell_circumcenter_cartesian_x (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" cell_circumcenter_cartesian_y (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
" cell_circumcenter_cartesian_z (ncells) float64 dask.array<chunksize=(10485760,), meta=np.ndarray>\n",
"Attributes:\n",
" title: ICON grid description\n",
" institution: Max Planck Institute for Meteorology/Deutscher ...\n",
" source: git@git.mpimet.mpg.de:GridGenerator.git\n",
" revision: d00fcac1f61fa16c686bfe51d1d8eddd09296cb5\n",
" date: 20180529 at 222250\n",
" user_name: Rene Redler (m300083)\n",
" os_name: Linux 2.6.32-696.18.7.el6.x86_64 x86_64\n",
" uuidOfHGrid: 0f1e7d66-637e-11e8-913b-51232bb4d8f9\n",
" grid_mapping_name: lat_long_on_sphere\n",
" crs_id: urn:ogc:def:cs:EPSG:6.0:6422\n",
" crs_name: Spherical 2D Coordinate System\n",
" ellipsoid_name: Sphere\n",
" semi_major_axis: 6371229.0\n",
" inverse_flattening: 0.0\n",
" grid_level: 9\n",
" grid_root: 2\n",
" grid_ID: 1\n",
" parent_grid_ID: 0\n",
" no_of_subgrids: 1\n",
" start_subgrid_id: 1\n",
" max_childdom: 1\n",
" boundary_depth_index: 0\n",
" rotation_vector: [0. 0. 0.]\n",
" grid_geometry: 1\n",
" grid_cell_type: 3\n",
" mean_edge_length: 7510.64679407352\n",
" mean_dual_edge_length: 4336.344345177032\n",
" mean_cell_area: 24323517.809282698\n",
" mean_dual_cell_area: 48647026.33989711\n",
" domain_length: 40031612.44147649\n",
" domain_height: 40031612.44147649\n",
" sphere_radius: 6371229.0\n",
" domain_cartesian_center: [0. 0. 0.]\n",
" centre: 252\n",
" rotation: 37deg around z-axis\n",
" coverage: global\n",
" symmetry: along equator\n",
" topography: modified SRTM30\n",
" subcentre: 1\n",
" number_of_grid_used: 15\n",
" history: Thu Aug 16 11:05:44 2018: ncatted -O -a ICON_gr...\n",
" ICON_grid_file_uri: http://icon-downloads.mpimet.mpg.de/grids/publi...\n",
" NCO: netCDF Operators version 4.7.5 (Homepage = http... Dimensions: cell_grf : 14edge : 31457280edge_grf : 24max_chdom : 1max_stored_decompositions : 4nc : 2ncells : 20971520ne : 6no : 4nv : 3two_grf : 2vert_grf : 13vertex : 10485762
Coordinates: (6)
clon
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : center longitude units : radian standard_name : grid_longitude bounds : clon_vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
clat
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : center latitude units : radian standard_name : grid_latitude bounds : clat_vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
vlon
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : vertex longitude units : radian standard_name : grid_longitude bounds : vlon_vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
vlat
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : vertex latitude units : radian standard_name : grid_latitude bounds : vlat_vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
elon
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : edge midpoint longitude units : radian standard_name : grid_longitude bounds : elon_vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
elat
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : edge midpoint latitude units : radian standard_name : grid_latitude bounds : elat_vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
Data variables: (91)
clon_vertices
(ncells, nv)
float64
dask.array<chunksize=(5242880, 3), meta=np.ndarray>
\n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 503.32 MB 125.83 MB \n",
" Shape (20971520, 3) (5242880, 3) \n",
" Count 5 Tasks 4 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 3 \n",
" 20971520 \n",
" \n",
" \n",
" \n",
"
clat_vertices
(ncells, nv)
float64
dask.array<chunksize=(5242880, 3), meta=np.ndarray>
\n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 503.32 MB 125.83 MB \n",
" Shape (20971520, 3) (5242880, 3) \n",
" Count 5 Tasks 4 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 3 \n",
" 20971520 \n",
" \n",
" \n",
" \n",
"
vlon_vertices
(vertex, ne)
float64
dask.array<chunksize=(1747627, 6), meta=np.ndarray>
\n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 503.32 MB 83.89 MB \n",
" Shape (10485762, 6) (1747627, 6) \n",
" Count 7 Tasks 6 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 6 \n",
" 10485762 \n",
" \n",
" \n",
" \n",
"
vlat_vertices
(vertex, ne)
float64
dask.array<chunksize=(1747627, 6), meta=np.ndarray>
\n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 503.32 MB 83.89 MB \n",
" Shape (10485762, 6) (1747627, 6) \n",
" Count 7 Tasks 6 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 6 \n",
" 10485762 \n",
" \n",
" \n",
" \n",
"
elon_vertices
(edge, no)
float64
dask.array<chunksize=(3932160, 4), meta=np.ndarray>
\n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 1.01 GB 125.83 MB \n",
" Shape (31457280, 4) (3932160, 4) \n",
" Count 9 Tasks 8 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 4 \n",
" 31457280 \n",
" \n",
" \n",
" \n",
"
elat_vertices
(edge, no)
float64
dask.array<chunksize=(3932160, 4), meta=np.ndarray>
\n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 1.01 GB 125.83 MB \n",
" Shape (31457280, 4) (3932160, 4) \n",
" Count 9 Tasks 8 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 4 \n",
" 31457280 \n",
" \n",
" \n",
" \n",
"
ifs2icon_cell_grid
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : ifs to icon cells \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
ifs2icon_edge_grid
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : ifs to icon edge \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
ifs2icon_vertex_grid
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : ifs to icon vertex \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cell_area
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : area of grid cell units : m2 standard_name : area grid_type : unstructured number_of_grid_in_reference : 1 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
dual_area
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : areas of dual hexagonal/pentagonal cells units : m2 standard_name : area \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
phys_cell_id
(ncells)
int32
dask.array<chunksize=(20971520,), meta=np.ndarray>
long_name : physical domain ID of cell grid_type : unstructured number_of_grid_in_reference : 1 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (20971520,) (20971520,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
phys_edge_id
(edge)
int32
dask.array<chunksize=(31457280,), meta=np.ndarray>
long_name : physical domain ID of edge \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 125.83 MB 125.83 MB \n",
" Shape (31457280,) (31457280,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
lon_cell_centre
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : longitude of cell centre units : radian grid_type : unstructured number_of_grid_in_reference : 1 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
lat_cell_centre
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : latitude of cell centre units : radian grid_type : unstructured number_of_grid_in_reference : 1 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
lat_cell_barycenter
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : latitude of cell barycenter units : radian grid_type : unstructured number_of_grid_in_reference : 1 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
lon_cell_barycenter
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : longitude of cell barycenter units : radian grid_type : unstructured number_of_grid_in_reference : 1 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
longitude_vertices
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : longitude of vertices units : radian \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
latitude_vertices
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : latitude of vertices units : radian \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
lon_edge_centre
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : longitudes of edge midpoints units : radian \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
lat_edge_centre
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : latitudes of edge midpoints units : radian \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_of_cell
(nv, ncells)
int32
dask.array<chunksize=(3, 10485760), meta=np.ndarray>
long_name : edges of each cellvertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (3, 20971520) (3, 10485760) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 3 \n",
" \n",
" \n",
" \n",
"
vertex_of_cell
(nv, ncells)
int32
dask.array<chunksize=(3, 10485760), meta=np.ndarray>
long_name : vertices of each cellcells ad \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (3, 20971520) (3, 10485760) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 3 \n",
" \n",
" \n",
" \n",
"
adjacent_cell_of_edge
(nc, edge)
int32
dask.array<chunksize=(2, 15728640), meta=np.ndarray>
long_name : cells adjacent to each edge \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (2, 31457280) (2, 15728640) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 2 \n",
" \n",
" \n",
" \n",
"
edge_vertices
(nc, edge)
int32
dask.array<chunksize=(2, 15728640), meta=np.ndarray>
long_name : vertices at the end of of each edge \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (2, 31457280) (2, 15728640) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 2 \n",
" \n",
" \n",
" \n",
"
cells_of_vertex
(ne, vertex)
int32
dask.array<chunksize=(6, 5242881), meta=np.ndarray>
long_name : cells around each vertex \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (6, 10485762) (6, 5242881) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 6 \n",
" \n",
" \n",
" \n",
"
edges_of_vertex
(ne, vertex)
int32
dask.array<chunksize=(6, 5242881), meta=np.ndarray>
long_name : edges around each vertex \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (6, 10485762) (6, 5242881) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 6 \n",
" \n",
" \n",
" \n",
"
vertices_of_vertex
(ne, vertex)
int32
dask.array<chunksize=(6, 5242881), meta=np.ndarray>
long_name : vertices around each vertex \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (6, 10485762) (6, 5242881) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 6 \n",
" \n",
" \n",
" \n",
"
cell_area_p
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : area of grid cell units : m2 grid_type : unstructured number_of_grid_in_reference : 1 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cell_elevation
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : elevation at the cell centers units : m grid_type : unstructured number_of_grid_in_reference : 1 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cell_sea_land_mask
(ncells)
int32
dask.array<chunksize=(20971520,), meta=np.ndarray>
long_name : sea (-2 inner, -1 boundary) land (2 inner, 1 boundary) mask for the cell units : 2,1,-1,- grid_type : unstructured number_of_grid_in_reference : 1 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (20971520,) (20971520,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cell_domain_id
(ncells, max_stored_decompositions)
int32
dask.array<chunksize=(5242880, 4), meta=np.ndarray>
long_name : cell domain id for decomposition \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 335.54 MB 83.89 MB \n",
" Shape (20971520, 4) (5242880, 4) \n",
" Count 5 Tasks 4 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 4 \n",
" 20971520 \n",
" \n",
" \n",
" \n",
"
cell_no_of_domains
(max_stored_decompositions)
int32
dask.array<chunksize=(4,), meta=np.ndarray>
long_name : number of domains for each decomposition \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 16 B 16 B \n",
" Shape (4,) (4,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 4 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
dual_area_p
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : areas of dual hexagonal/pentagonal cells units : m2 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_length
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : lengths of edges of triangular cells units : m \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_cell_distance
(nc, edge)
float64
dask.array<chunksize=(2, 7864320), meta=np.ndarray>
long_name : distances between edge midpoint and adjacent triangle midpoints units : m \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 503.32 MB 125.83 MB \n",
" Shape (2, 31457280) (2, 7864320) \n",
" Count 5 Tasks 4 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 2 \n",
" \n",
" \n",
" \n",
"
dual_edge_length
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : lengths of dual edges (distances between triangular cell circumcenters) units : m \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edgequad_area
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : area around the edge formed by the two adjacent triangles units : m2 \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_elevation
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : elevation at the edge centers units : m \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_sea_land_mask
(edge)
int32
dask.array<chunksize=(31457280,), meta=np.ndarray>
long_name : sea (-2 inner, -1 boundary) land (2 inner, 1 boundary) mask for the cell units : 2,1,-1,- \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 125.83 MB 125.83 MB \n",
" Shape (31457280,) (31457280,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_vert_distance
(nc, edge)
float64
dask.array<chunksize=(2, 7864320), meta=np.ndarray>
long_name : distances between edge midpoint and vertices of that edge units : m \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 503.32 MB 125.83 MB \n",
" Shape (2, 31457280) (2, 7864320) \n",
" Count 5 Tasks 4 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 2 \n",
" \n",
" \n",
" \n",
"
zonal_normal_primal_edge
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : zonal component of normal to primal edge units : radian \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
meridional_normal_primal_edge
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : meridional component of normal to primal edge units : radian \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
zonal_normal_dual_edge
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : zonal component of normal to dual edge units : radian \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
meridional_normal_dual_edge
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : meridional component of normal to dual edge units : radian \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
orientation_of_normal
(nv, ncells)
int32
dask.array<chunksize=(3, 10485760), meta=np.ndarray>
long_name : orientations of normals to triangular cell edges \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (3, 20971520) (3, 10485760) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 3 \n",
" \n",
" \n",
" \n",
"
cell_index
(ncells)
int32
dask.array<chunksize=(20971520,), meta=np.ndarray>
\n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (20971520,) (20971520,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
parent_cell_index
(ncells)
int32
dask.array<chunksize=(20971520,), meta=np.ndarray>
long_name : parent cell index \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (20971520,) (20971520,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
parent_cell_type
(ncells)
int32
dask.array<chunksize=(20971520,), meta=np.ndarray>
long_name : parent cell type \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (20971520,) (20971520,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
neighbor_cell_index
(nv, ncells)
int32
dask.array<chunksize=(3, 10485760), meta=np.ndarray>
long_name : cell neighbor index \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (3, 20971520) (3, 10485760) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 3 \n",
" \n",
" \n",
" \n",
"
child_cell_index
(no, ncells)
int32
dask.array<chunksize=(4, 5242880), meta=np.ndarray>
long_name : child cell index \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 335.54 MB 83.89 MB \n",
" Shape (4, 20971520) (4, 5242880) \n",
" Count 5 Tasks 4 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 4 \n",
" \n",
" \n",
" \n",
"
child_cell_id
(ncells)
int32
dask.array<chunksize=(20971520,), meta=np.ndarray>
long_name : domain ID of child cell \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (20971520,) (20971520,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_index
(edge)
int32
dask.array<chunksize=(31457280,), meta=np.ndarray>
\n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 125.83 MB 125.83 MB \n",
" Shape (31457280,) (31457280,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_parent_type
(edge)
int32
dask.array<chunksize=(31457280,), meta=np.ndarray>
\n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 125.83 MB 125.83 MB \n",
" Shape (31457280,) (31457280,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
vertex_index
(vertex)
int32
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : vertices index \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 41.94 MB 41.94 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_orientation
(ne, vertex)
int32
dask.array<chunksize=(6, 5242881), meta=np.ndarray>
long_name : edge orientation \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (6, 10485762) (6, 5242881) \n",
" Count 3 Tasks 2 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 6 \n",
" \n",
" \n",
" \n",
"
edge_system_orientation
(edge)
int32
dask.array<chunksize=(31457280,), meta=np.ndarray>
long_name : edge system orientation \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 125.83 MB 125.83 MB \n",
" Shape (31457280,) (31457280,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
refin_c_ctrl
(ncells)
int32
dask.array<chunksize=(20971520,), meta=np.ndarray>
long_name : refinement control flag for cells \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (20971520,) (20971520,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
index_c_list
(two_grf, cell_grf)
int32
dask.array<chunksize=(2, 14), meta=np.ndarray>
long_name : list of start and end indices for each refinement control level for cells \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 112 B 112 B \n",
" Shape (2, 14) (2, 14) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 14 \n",
" 2 \n",
" \n",
" \n",
" \n",
"
start_idx_c
(max_chdom, cell_grf)
int32
dask.array<chunksize=(1, 14), meta=np.ndarray>
long_name : list of start indices for each refinement control level for cells \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 56 B 56 B \n",
" Shape (1, 14) (1, 14) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 14 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
end_idx_c
(max_chdom, cell_grf)
int32
dask.array<chunksize=(1, 14), meta=np.ndarray>
long_name : list of end indices for each refinement control level for cells \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 56 B 56 B \n",
" Shape (1, 14) (1, 14) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 14 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
refin_e_ctrl
(edge)
int32
dask.array<chunksize=(31457280,), meta=np.ndarray>
long_name : refinement control flag for edges \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 125.83 MB 125.83 MB \n",
" Shape (31457280,) (31457280,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
index_e_list
(two_grf, edge_grf)
int32
dask.array<chunksize=(2, 24), meta=np.ndarray>
long_name : list of start and end indices for each refinement control level for edges \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 192 B 192 B \n",
" Shape (2, 24) (2, 24) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 24 \n",
" 2 \n",
" \n",
" \n",
" \n",
"
start_idx_e
(max_chdom, edge_grf)
int32
dask.array<chunksize=(1, 24), meta=np.ndarray>
long_name : list of start indices for each refinement control level for edges \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 96 B 96 B \n",
" Shape (1, 24) (1, 24) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 24 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
end_idx_e
(max_chdom, edge_grf)
int32
dask.array<chunksize=(1, 24), meta=np.ndarray>
long_name : list of end indices for each refinement control level for edges \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 96 B 96 B \n",
" Shape (1, 24) (1, 24) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 24 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
refin_v_ctrl
(vertex)
int32
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : refinement control flag for vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 41.94 MB 41.94 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
index_v_list
(two_grf, vert_grf)
int32
dask.array<chunksize=(2, 13), meta=np.ndarray>
long_name : list of start and end indices for each refinement control level for vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 104 B 104 B \n",
" Shape (2, 13) (2, 13) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 13 \n",
" 2 \n",
" \n",
" \n",
" \n",
"
start_idx_v
(max_chdom, vert_grf)
int32
dask.array<chunksize=(1, 13), meta=np.ndarray>
long_name : list of start indices for each refinement control level for vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 52 B 52 B \n",
" Shape (1, 13) (1, 13) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 13 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
end_idx_v
(max_chdom, vert_grf)
int32
dask.array<chunksize=(1, 13), meta=np.ndarray>
long_name : list of end indices for each refinement control level for vertices \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 52 B 52 B \n",
" Shape (1, 13) (1, 13) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 13 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
parent_edge_index
(edge)
int32
dask.array<chunksize=(31457280,), meta=np.ndarray>
long_name : parent edge index \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 125.83 MB 125.83 MB \n",
" Shape (31457280,) (31457280,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
child_edge_index
(no, edge)
int32
dask.array<chunksize=(4, 7864320), meta=np.ndarray>
long_name : child edge index \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 503.32 MB 125.83 MB \n",
" Shape (4, 31457280) (4, 7864320) \n",
" Count 5 Tasks 4 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 4 \n",
" \n",
" \n",
" \n",
"
child_edge_id
(edge)
int32
dask.array<chunksize=(31457280,), meta=np.ndarray>
long_name : domain ID of child edge \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 125.83 MB 125.83 MB \n",
" Shape (31457280,) (31457280,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
parent_vertex_index
(vertex)
int32
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : parent vertex index \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 41.94 MB 41.94 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type int32 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cartesian_x_vertices
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : vertex cartesian coordinate x on unit sp units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cartesian_y_vertices
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : vertex cartesian coordinate y on unit sp units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cartesian_z_vertices
(vertex)
float64
dask.array<chunksize=(10485762,), meta=np.ndarray>
long_name : vertex cartesian coordinate z on unit sp units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 83.89 MB 83.89 MB \n",
" Shape (10485762,) (10485762,) \n",
" Count 2 Tasks 1 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 10485762 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_middle_cartesian_x
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : prime edge center cartesian coordinate x on unit sphere units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_middle_cartesian_y
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : prime edge center cartesian coordinate y on unit sphere units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_middle_cartesian_z
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : prime edge center cartesian coordinate z on unit sphere units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_dual_middle_cartesian_x
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : dual edge center cartesian coordinate x on unit sphere units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_dual_middle_cartesian_y
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : dual edge center cartesian coordinate y on unit sphere units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_dual_middle_cartesian_z
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : dual edge center cartesian coordinate z on unit sphere units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_primal_normal_cartesian_x
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : unit normal to the prime edge 3D vector, coordinate x units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_primal_normal_cartesian_y
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : unit normal to the prime edge 3D vector, coordinate y units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_primal_normal_cartesian_z
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : unit normal to the prime edge 3D vector, coordinate z units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_dual_normal_cartesian_x
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : unit normal to the dual edge 3D vector, coordinate x units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_dual_normal_cartesian_y
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : unit normal to the dual edge 3D vector, coordinate y units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
edge_dual_normal_cartesian_z
(edge)
float64
dask.array<chunksize=(15728640,), meta=np.ndarray>
long_name : unit normal to the dual edge 3D vector, coordinate z units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 251.66 MB 125.83 MB \n",
" Shape (31457280,) (15728640,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 31457280 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cell_circumcenter_cartesian_x
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : cartesian position of the prime cell circumcenter on the unit sphere, coordinate x units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cell_circumcenter_cartesian_y
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : cartesian position of the prime cell circumcenter on the unit sphere, coordinate y units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
cell_circumcenter_cartesian_z
(ncells)
float64
dask.array<chunksize=(10485760,), meta=np.ndarray>
long_name : cartesian position of the prime cell circumcenter on the unit sphere, coordinate z units : meters \n",
"\n",
"\n",
"\n",
" \n",
" Array Chunk \n",
" \n",
" \n",
" Bytes 167.77 MB 83.89 MB \n",
" Shape (20971520,) (10485760,) \n",
" Count 3 Tasks 2 Chunks \n",
" Type float64 numpy.ndarray \n",
" \n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" 20971520 \n",
" 1 \n",
" \n",
" \n",
" \n",
"
Attributes: (43)
title : ICON grid description institution : Max Planck Institute for Meteorology/Deutscher Wetterdienst source : git@git.mpimet.mpg.de:GridGenerator.git revision : d00fcac1f61fa16c686bfe51d1d8eddd09296cb5 date : 20180529 at 222250 user_name : Rene Redler (m300083) os_name : Linux 2.6.32-696.18.7.el6.x86_64 x86_64 uuidOfHGrid : 0f1e7d66-637e-11e8-913b-51232bb4d8f9 grid_mapping_name : lat_long_on_sphere crs_id : urn:ogc:def:cs:EPSG:6.0:6422 crs_name : Spherical 2D Coordinate System ellipsoid_name : Sphere semi_major_axis : 6371229.0 inverse_flattening : 0.0 grid_level : 9 grid_root : 2 grid_ID : 1 parent_grid_ID : 0 no_of_subgrids : 1 start_subgrid_id : 1 max_childdom : 1 boundary_depth_index : 0 rotation_vector : [0. 0. 0.] grid_geometry : 1 grid_cell_type : 3 mean_edge_length : 7510.64679407352 mean_dual_edge_length : 4336.344345177032 mean_cell_area : 24323517.809282698 mean_dual_cell_area : 48647026.33989711 domain_length : 40031612.44147649 domain_height : 40031612.44147649 sphere_radius : 6371229.0 domain_cartesian_center : [0. 0. 0.] centre : 252 rotation : 37deg around z-axis coverage : global symmetry : along equator topography : modified SRTM30 subcentre : 1 number_of_grid_used : 15 history : Thu Aug 16 11:05:44 2018: ncatted -O -a ICON_grid_file_uri,global,m,c,http://icon-downloads.mpimet.mpg.de/grids/public/mpim/0015/icon_grid_0015_R02B09_G.nc icon_grid_0015_R02B09_G.nc test.nc\n",
"Wed May 30 08:50:27 2018: ncatted -a centre,global,c,i,252 -a rotation,global,c,c,37deg around z-axis -a coverage,global,c,c,global -a symmetry,global,c,c,along equator -a topography,global,c,c,modified SRTM30 -a subcentre,global,c,i,1 -a number_of_grid_used,global,c,i,15 -a ICON_grid_file_uri,global,c,c,http://icon-downloads.mpimet.mpg.de/grids/public/icon_grid_0015_R02B09_G.nc Earth_Global_IcosSymmetric_4932m_rotatedZ37d_modified_srtm30_1min.nc icon_grid_0015_R02B09_G.nc\n",
"/mnt/lustre01/work/mh0287/users/rene/GridGenerator/build/x86_64-unknown-linux-gnu/bin/grid_command ICON_grid_file_uri : http://icon-downloads.mpimet.mpg.de/grids/public/mpim/0015/icon_grid_0015_R02B09_G.nc NCO : netCDF Operators version 4.7.5 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco) "
],
"text/plain": [
"